

Israel

Technion Haifa

Japan Aichi

Toho

Kobe

Nagoyn Nihon

Korea

Jinju

Observation of $v_u \rightarrow v_{\tau}$ oscillation with OPERA

On behalf of the OPERA Collaboration

S.Dusini - INFN Padova

Neutrino appearance

Neutrino oscillation pioneered via neutrino disappearance Super-KAMIOKANDE, MACRO.... ...and for long time the disappearance dominated the scene

SK, SNO, MINOS, KamLAND, Borexino....

Hard life for appearance:

Solar scale:

 $v_e \rightarrow v_u$: below threshold for μ production

Atmospheric scale: experimentally difficult

 $v_u \rightarrow v_e$: subleading (T2K)

 $v_{\mu} \rightarrow v_{\tau}$: with cosmic ray neutrinos (SK) statistical separation from large background

 $v_{\mu} \rightarrow v_{\tau}$: LBL beam neutrinos (OPERA) with tau lepton identification on an event by event basis

The neutrino appearance is a key observation to establish the neutrino oscillation phenomenon.

CNGS beam

Beam requirements

- 1) high neutrino energy,
- 2) long baseline,
- 3) high beam intensity,

732 km

High energy beam optimized to maximize tau production

$$P(v_{\mu} \rightarrow v_{\tau}) \sim O(1)\%$$

S.Dusini - INI

Laboratori Nazionali del Gran Sasso

au detection $u_{\mu} \stackrel{ ext{oscillation}}{\longrightarrow} u_{ au} + N ightarrow au^{-} + X$

The separation of the $v_{\tau}CC$ from the dominant v_{μ} interactions event-by-event, of the peculiar decay topology of the τ .

Hybrid detector

~150000 bricks (1.25 kton) + electronic detectors

Collected data and status of the analysis

Year	P.O.T. (10 ¹⁹)	SPS Eff.	Beam days	v interactions
2008	1.7	61%	123	1931
2009	3.53	73%	155	4005
2010	4.09	80%	187	4515
2011	4.75	79%	243	5131
2012	3.86	82%	257	3923
Total	17.97	77%	965	19505

₩ 80% o

80% of the design

~87% predicted in the bricks

Scanning strategy

Bricks ordered by the probability to contain the neutrino interaction

2008-2009: analysis of the 1st and 2nd most probable brick

2010-2012 : analysis of the 1st brick (2nd brick postponed)

9, 22 Aug 2009, 19:27 (UTC), XZ pro

Vertex location and decay topology Search

The first two steps of the analysis chain are:

- 1. location of neutrino interaction
- search of decay topologies (e.g. large Impact Parameter-IP)

Full MC simulation including all steps of the scanning procedure followed in the scanning labs.

Search for decay topologies: charm control sample

Charmed hadrons produced by $v_{\mu}CC$ interactions

→ muon at the primary vertex.

Mass and lifetime charmed hadrons ~ tau lepton

→ similar decay topology

 W^{\perp}

d, s

	charm	back- ground	expected	data	
1 prong	21 ± 2	9 ± 3	30 ± 4	19	
2 prong	14 ± 1	4 ± 1	18 ± 2	22	
3 prong	4 ± 1	1.0 ± 0.3	5 ± 1	5	
4 prong	0.9 ± 0.2	-	0.9 ± 0.2	4	
All	40±3	14±3	54±4	50	

μ

2008-2010 OPERA data set 54 ± 4 charm events expected 50 observed in control sample

JHEP 1307 (2013) 004

 v_e searched in 505 (~ 50% full statistic) neutrino interaction without the muon in the final state Extension to full statistic in progress

		E < 20 GeV
Candidate v _e	19	4
Expected	19.8 ± 2.8 (sys)	4.6

 $\sin^2(2\theta_{\text{new}}) < 7.2 \times 10^{-3} \text{ (90% CL)}$ $\sin^2(2\theta_{13}) < 0.44 \text{ (90% CL)}$

Oscillation results

variable	au o 1h	au o 3h	$ au ightarrow \mu$	au ightarrow e
lepton-tag		No μ or e at the	e primary vertex	
$z_{dec}~(\mu { m m})$	[44, 2600]	< 2600	[44, 2600]	< 2600
$p_T^{miss} \; (\mathrm{GeV}/c)$	< 1*	< 1*	/	/
$\phi_{lH} \text{ (rad)}$	$>\pi/2^{\star}$	$>\pi/2^{\star}$	/	/
$p_T^{2ry} \; (\mathrm{GeV}/c)$	$> 0.6(0.3)^*$	/	> 0.25	> 0.1
$p^{2ry} \left(\text{GeV}/c \right)$	> 2	> 3	> 1 and < 15	> 1 and < 15
$\theta_{kink} $ (mrad)	> 20	< 500	> 20	> 20
$m, m_{min} ({\rm GeV}/c^2)$	/	> 0.5 and < 2	/	/

Kinematical selection cuts kept fixed since beginning of the experiment.

Data sample:

2008/09: 1st and 2nd probable brick

2010/11/12: 1st probable brick

5522 events analysed

Expected 2.1 ± 0.4

 $(\Delta m_{23}^2 = 2.32 \times 10^{-3} \text{ eV}^2, \theta_{23} = \pi/4)$

Observed 4

	Values	Selection
P daughter (GeV/c)	6.0 +2.2	> 2
Kink P_t (GeV/c)	0.82 +0.30	> 0.6
P _t at 1ry (GeV/c)	0.55 +0.30	< 1.0
Phi (degrees)	166 ⁺²	> 90
Kink angle (mrad)	137 ± 4	> 20
Decay position (µm)	1090 ± 30	< 2600

Kinematics of $3^{rd} \nu_{\tau}$ candidate $(\tau \rightarrow h)$

dova

Background to

Production of charmed particles in CC interactions (affect all decay channels) $\begin{array}{c} \mu^{+}, e^{-} \\ \mu^{+}, e^{-} \\ \mu^{+} \\ e^{+} \\ h^{+} \end{array}$

MC tuned on CHORUS data (cross section and fragmentation functions), validated with measured charm events in OPERA

FLUKA + test beam data (OPERA bricks exposed to pion beams)

Lare angle Coulomb scattering of muons in lead Bck. to $\tau \rightarrow \mu$

MC tuned on old measurements on lead form factor + dedicated test beam (in progress)

Data sample:

2008/09: 398 (Oμ events) + 1553 (1μ events)

2010/11/12: 582 (Oµ events) + 2153 (1µ events)

The expected signal and background is normalized to the number of located

events

$$n^{0\mu}(
u_{ au}^{CC}) = rac{\left\langle \sigma(
u_{ au}^{CC})
ight
angle}{\left\langle \sigma(
u_{\mu}^{CC})
ight
angle} rac{\left\langle \epsilon^{0\mu}(
u_{ au}^{CC})
ight
angle}{\left\langle \epsilon^{0\mu}(
u_{ au}^{CC})
ight
angle + lpha \left\langle \epsilon^{0\mu}(
u_{ au}^{NC})
ight
angle} \; n^{0\mu} \qquad lpha = rac{NC}{CC}$$

Decay channel	Expected signal $\Delta m_{23}^2 = 2.32 \text{ meV}^2$	Total background	Observed
τ→h	0.4 ± 0.08	0.033 ± 0.006	2
τ→3h	0.57 ± 0.11	0.155 ± 0.03	1
τ→μ	0.52 ± 0.1	0.018 ± 0.007	1
τ→e	0.61 ± 0.12	0.027 ± 0.005	0
Total	2.1 ± 0.42	0.23 ± 0.04	4

Two statistical method:

- Fisher combination of single channel p-value
- Likelihood ratio

p-value = 1.03×10^{-5} of no oscillation

no oscillation excluded at 4.2 σ CL

First measurement of Δm^2_{32} with tau appearance

$$N_{
u_{ au}} \propto \int \phi(E) \sin^2\left(rac{\Delta m_{32}^2 L}{4E}
ight) \epsilon(E) \sigma(E) dE \ \propto (\Delta m_{32}^2)^2 L^2 \int \phi(E) \epsilon(E) rac{\sigma(E)}{E^2} dE$$

OPERA Off-peak L/<E> ~ 43 Km/GeV (L/<E>)_{peak} ~ 500 Km/GeV

strong dependence on $\Delta m^2 \rightarrow$ measure Δm^2 with counting experiment

90% CL intervals on Δm_{32}^2 assuming $\sin 2(2\theta_{23}) = 1$

Feldman&Cousin

$$[1.8 - 5] \times 10^{-3} \text{ eV}^2$$

Bayesian

 $[1.9 - 5] \times 10^{-3} \text{ eV}^2$

Vormal hierarchy

Sterile neutrinos

Tau appearance in the presence of sterile neutrino (3+1)

Solar driven oscillation neglected $\Delta_{21} \sim 0$

~ standard oscillation

nterference

pure exotic oscillation

 $P_{
u_{\mu}
ightarrow
u_{ au}}=4|U_{\mu3}|^2|U_{ au3}|^2\sin^2rac{\Delta_{31}}{2}+4|U_{\mu4}|^2|U_{ au4}|^2\sin^2rac{\Delta_{41}}{2}$

Profile likelihood using Tau rate only

$$\Delta m_{32}^2 = 2.32 \times 10^{-3} eV^2$$

90% CL bounds on $U_{\tau 4}$ and $U_{\iota\iota 4}$

Complementary measurement wrt

Choosing a particular representation (same as MINOS)

 $\Delta_{21} \sim 0$ (solar oscillation) $s_{14} \sim 0$ (reactor anomaly) $\rightarrow \delta_1 = 0$

$$U=R_{34}(heta_{34})R_{24}(heta_{24,\delta_2})R_{14}(heta_{14})R_{23}(heta_{23})R_{13}(heta_{13},\delta_1)R_{12}(heta_{12},\delta_3)$$

Effective mixing

 $\sin^2 2 heta_{\mu au} = 4|U_{\mu 4}|^2|U_{ au 4}|^2 = \sin^2 2 heta_{24}\sin^2 heta_{34}$

Conclusions

- OPERA has recorded neutrino interaction equivalent to $\sim 1.8 \times 10^{20}$ pot delivered by CNGS beam from 2008 to 2012 (80% of nominal)
- 4 ν_{τ} candidates observed so far with a background of 0.23 event.
- No oscillation hypothesis excluded at 4.2 σ

Observation of ν_z appearance

- First measurement of Δm^2_{31} = [1.8 5.0] × 10⁻³ eV² (90% CL) for $\sin^2(2\theta_{23})$ = 1 using neutrino appearance
- Constrain on sterile neutrinos: first limits on $|U_{\mu 4}|^2 |U_{\tau 4}|^2$ from direct measurement of $\nu_\mu \to \nu_\tau$ oscillation

Thank you for your attention

Backup

Visible energy of all the candidates

Sum of the momenta of charged particles and γ 's measured in emulsion

Hadron interaction background

NO

Estimated with Fluka MC and validated with test beam data (OPERA bricks

exposed to pion beams)

Background to

 $\tau \rightarrow h = 3.09 \times 10^{-5} / located events v.$

 $\tau \rightarrow 3h = 1.5 \times 10^{-5}$ / located events

Hadron interaction rate suppressed by search of large angle tracks produced by nuclear fragments

Fragments

Large angle muon scattering background

No measurements except an upper limit from scattering on Cu: S.A. Akimenko et al., NIM A243 (1986) 518 (< 10^{-5} in lead). 10^{-5} rate used Plan to revise this number by an experimental measurement with emulsion

Track features

			First measurement	Second measurement	Average	
	Track ID	Particle ID	Slopes	Slopes	Slopes	P (GeV/c)
1ry	1 parent	τ	-0.143, 0.026	-0.145, 0.014	-0.144, 0.020	-
	2	Hadron (Range)	-0.044, 0.082	-0.047, 0.073	-0.046, 0.078	1.9 [1.7, 2.2]
	3	Hadron (interact)	0.122, 0.149	0.139, 0.143	0.131, 0.146	1.1 [1.0, 1.2]
	4	proton	-0.083, 0.348	-0.080, 0.355	-0.082, 0.352	$p\beta = 0.4 [0.3, 0.5]$
	γ1	e-pair	-0.229, 0.068	-0.238, 0.055	-0.234, 0.062	0.7 [0.6, 0.9]
	γ2	e-pair	0.111, -0.014	0.115,-0.034	0.113,-0.024	4.0 [2.6, 8.7]
2ry	daughter	Hadron (Range)	-0.084, 0.148	-0.091, 0.145	-0.088, 0.147	6.0 [4.8, 8.2]

		ΔΖ (μm)	δθ _{RM} (mrad)	IP (μm)	IP Resolution (μm)	Attachment
γ1	To 1ry	676	21.9	2	8	OK
γ2	To 1ry	7176	9.2	33	43	OK
	To 2ry	6124	9.2	267	36	Excluded

 $M = 0.59^{+0.20}_{-0.15}~{
m GeV/c^2}$ Not a single π^0

Search for highly ionizing particles in hadron interactions

Hadron interactions background can be reduced by increasing the detection efficiency of protons and nuclear fragments emitted in the cascade of intra-nuclear interactions and in nuclear evaporation process

Neutrino 2014 - Boston (USA)

Up stream of interaction point

S.Dusini - INFN Padova

Validation on the test-beam sample of hadronic interactions

 \triangleright No highly ionizing particle found in OPERA v_{τ} candidate

Oscillation Project with Emulsion tRacking Apparatus

